
Clickzetta Server
Enable seamless database interactions and insights analysis with SQL queries. Run complex queries and manage data efficiently while gaining valuable insights through a dynamic memo resource. Enhance your data-driven applications with powerful tools for querying and analysis.
Clickzetta MCP Server
Overview
A Model Context Protocol (MCP) server implementation that provides database interaction with Clickzetta Lakehouse. This server enables running SQL queries with tools and intereacting with a memo of data insights presented as a resource.
Quick Start with MCP-ClickZetta-Server/Trae as your AI Data Engineer
Download and install Trae
Download from trae.ai and sign in to enable use AI.
Get your ClickZetta Account
Pull MCP-ClickZetta-Server Docker Image
docker pull czqiliang/mcp-clickzetta-server
Add MCP server in Trae
- In the AI chat window, click the Settings icon > MCP.
- The MCP window will appear.
- Click the + Add button.
- You will enter the MCP Server Marketplace.
- Click Manual Configuration. The Manual Configuration window will appear. Add a brand-new MCP Server by pasting the following JSON configuration into the input box, then click the Confirm button. The MCP Server will be added to the MCP list.
{
"mcpServers": {
"clickzetta-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "LOG_LEVEL=INFO",
"-e", "CLICKZETTA_SERVICE",
"-e", "CLICKZETTA_INSTANCE",
"-e", "CLICKZETTA_WORKSPACE",
"-e", "CLICKZETTA_SCHEMA",
"-e", "CLICKZETTA_USERNAME",
"-e", "CLICKZETTA_PASSWORD",
"-e", "CLICKZETTA_VCLUSTER",
"-e", "XINFERENCE_BASE_URL",
"-e", "XINFERENCE_EMBEDDING_MODEL_512",
"-e", "Similar_table_name",
"-e", "Similar_embedding_column_name",
"-e", "Similar_content_column_name",
"-e", "Similar_partition_scope",
"czqiliang/mcp-clickzetta-server:latest"
],
"env": {
"CLICKZETTA_SERVICE": "api.clickzetta.com",
"CLICKZETTA_INSTANCE": "your clickzetta instance",
"CLICKZETTA_WORKSPACE": "your clickzetta workspace" ,
"CLICKZETTA_SCHEMA": "your clickzetta schema",
"CLICKZETTA_USERNAME": "your clickzetta usename",
"CLICKZETTA_PASSWORD": "your clickzetta password",
"CLICKZETTA_VCLUSTER": "your clickzetta vcluster",
"XINFERENCE_BASE_URL": "http://host.docker.internal:9998",
"XINFERENCE_EMBEDDING_MODEL_512": "bge-small-zh",
"Similar_table_name": "clickzegithub_event_issuesevent_embedding.github_event_issuesevent_embedding_512tta_table",
"Similar_embedding_column_name": "issue_body_embedding",
"Similar_content_column_name": "issue_body",
"Similar_partition_scope": "partition_date >= '2024-01-01' and partition_date <= '2024-01-15'"
}
}
}
}
- CLICKZETTA开头的env参数为必填
- XINFERENCE开头的和Similar开头的env参数为可选,支持vector_search和match_all连个tools
Quick Start with MCP-ClickZetta-Server/Zettapark-MCP-Server/Claude Desktop as your AI Data Engineer
Download and install Claude Desktop
Download from claude.ai and sign in.
Get your ClickZetta Account
Create config.json file and set your login infor as below:
{
"username": "your clickzetta lakehouse user name",
"password": "your clickzetta lakehouse password",
"service": "api.clickzetta.com",
"instance": "your clickzetta lakehouse instance name",
"workspace": "your clickzetta lakehouse workspac name",
"schema": "your clickzetta lakehouse schema",
"vcluster": "your clickzetta lakehouse vcluster name",
"sdk_job_timeout": 60,
"hints": {
"sdk.job.timeout": 60,
"query_tag": "test_zettapark_vector_ns227206",
"cz.storage.parquet.vector.index.read.memory.cache": "true",
"cz.storage.parquet.vector.index.read.local.cache": "false",
"cz.sql.table.scan.push.down.filter": "true",
"cz.sql.table.scan.enable.ensure.filter": "true",
"cz.storage.always.prefetch.internal": "true",
"cz.optimizer.generate.columns.always.valid": "true",
"cz.sql.index.prewhere.enabled": "true",
"cz.storage.parquet.enable.io.prefetch": "false"
}
}
Install your Jupyter lab
# Create a clean environment (Python 3.10 worked during debugging)
conda create -n jupyter_mcp_env python=3.10 -y
# Activate the environment
conda activate jupyter_mcp_env
# Use 'python -m pip' to ensure correct pip in the activated env
python -m pip install jupyterlab ipykernel
# Install the required v2.0.1
python -m pip install "jupyter_collaboration==2.0.1"
# Uninstall potentially conflicting versions
python -m pip uninstall -y pycrdt datalayer_pycrdt
# Install the required version
python -m pip install datalayer_pycrdt
jupyter server extension enable jupyter_collaboration --py --sys-prefix
# Start JupyterLab, please keep token as YOUR_SECURE_TOKEN
jupyter lab --port 8888 --IdentityProvider.token YOUR_SECURE_TOKEN --ip 0.0.0.0
Add MCP server in your Claude Desktop
- In Claude Desktop, go to Settings → Developer → Edit Config
- Open claude_desktop_config.json and config MCP servers
{
"mcpServers": {
"jupyter": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "SERVER_URL",
"-e", "TOKEN",
"-e", "NOTEBOOK_PATH",
"-e", "LOG_LEVEL=INFO",
"czqiliang/jupyter-mcp-server:latest"
],
"env": {
"SERVER_URL": "http://host.docker.internal:8888",
"TOKEN": "YOUR_SECURE_TOKEN",
"NOTEBOOK_PATH": "notebook.ipynb"
}
},
"clickzetta-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "LOG_LEVEL=INFO",
"-e", "CLICKZETTA_SERVICE",
"-e", "CLICKZETTA_INSTANCE",
"-e", "CLICKZETTA_WORKSPACE",
"-e", "CLICKZETTA_SCHEMA",
"-e", "CLICKZETTA_USERNAME",
"-e", "CLICKZETTA_PASSWORD",
"-e", "CLICKZETTA_VCLUSTER",
"-e", "XINFERENCE_BASE_URL",
"-e", "XINFERENCE_EMBEDDING_MODEL_512",
"-e", "Similar_table_name",
"-e", "Similar_embedding_column_name",
"-e", "Similar_content_column_name",
"-e", "Similar_partition_scope",
"czqiliang/mcp-clickzetta-server:latest"
],
"env": {
"CLICKZETTA_SERVICE": "api.clickzetta.com",
"CLICKZETTA_INSTANCE": "your clickzetta instance",
"CLICKZETTA_WORKSPACE": "your clickzetta workspace" ,
"CLICKZETTA_SCHEMA": "your clickzetta schema",
"CLICKZETTA_USERNAME": "your clickzetta usename",
"CLICKZETTA_PASSWORD": "your clickzetta password",
"CLICKZETTA_VCLUSTER": "your clickzetta vcluster",
"XINFERENCE_BASE_URL": "http://host.docker.internal:9998",
"XINFERENCE_EMBEDDING_MODEL_512": "bge-small-zh",
"Similar_table_name": "clickzegithub_event_issuesevent_embedding.github_event_issuesevent_embedding_512tta_table",
"Similar_embedding_column_name": "issue_body_embedding",
"Similar_content_column_name": "issue_body",
"Similar_partition_scope": "partition_date >= '2024-01-01' and partition_date <= '2024-01-15'"
}
}
}
}
You could get more detail information about Zettapark MCP Server from here.
Components
Resources
The server exposes a single dynamic resource:
memo://insights
: A continuously updated data insights memo that aggregates discovered insights during analysis- Auto-updates as new insights are discovered via the append-insight tool
Tools
The server offers the following core tools:
Query Tools
read_query
- Description: Execute
SELECT
queries to read data from the database. - Input:
query
(string): TheSELECT
SQL query to execute.
- Returns: Query results as an array of objects.
write_query
(requires --allow-write
flag)
- Description: Execute
INSERT
,UPDATE
, orDELETE
queries to modify data. - Input:
query
(string): The SQL modification query.
- Returns:
{ affected_rows: number }
, indicating the number of affected rows.
create_table
(requires --allow-write
flag)
- Description: Create new tables in the database.
- Input:
query
(string):CREATE TABLE
SQL statement.
- Returns: Confirmation of table creation.
create_table_with_prompt
(requires --allow-write
flag)
- Description: Create a new table by prompting the user for table name, columns, and their types.
- Input:
table_name
(string): The name of the table to create.columns
(string): The columns and their types in the formatcolumn1:type1,column2:type2
.
- Returns: Confirmation of table creation.
Schema Tools
list_tables
- Description: Get a list of all tables in the database.
- Input: No input required.
- Returns: An array of table names.
describe_table
- Description: View column information for a specific table.
- Input:
table_name
(string): Name of the table to describe (can be fully qualified).
- Returns: An array of column definitions with names and types.
show_object_list
- Description: Get the list of specific object types in the current workspace, such as catalogs, schemas, tables, etc.
- Input:
object_type
(string): The type of the object to show.
- Returns: A list of objects.
desc_object
- Description: Get detailed information about a specific object, such as a catalog, schema, or table.
- Input:
object_type
(string): The type of the object.object_name
(string): The name of the object.
- Returns: Detailed information about the object.
Analysis Tools
append_insight
- Description: Add new data insights to the memo resource.
- Input:
insight
(string): Data insight discovered from analysis.
- Returns: Confirmation of insight addition.
- Triggers: Updates the
memo://insights
resource.
Data Import Tools
import_data_into_table_from_url
- Description: Import data into a table from a URL (including file paths or HTTP/HTTPS URLs). If the destination table does not exist, it will be created automatically.
- Input:
from_url
(string): The data source URL.dest_table
(string): The table to import data into.
- Returns: Confirmation of successful data import.
import_data_into_table_from_database
- Description: Connect to a database, execute a query, and import the results into a Clickzetta table. Supports MySQL, PostgreSQL, SQLite, and other common database types.
- Input:
db_type
(string): The type of the database (e.g.,mysql
,postgresql
,sqlite
).host
(string): The hostname or IP address of the database server (not required for SQLite).port
(integer): The port number of the database server (not required for SQLite).database
(string): The name of the database to connect to (for SQLite, this is the file path to the database file).username
(string): The username for authentication (not required for SQLite).password
(string): The password for authentication (not required for SQLite).source_table
(string): The source table name.dest_table
(string): The destination table name.
- Returns: Confirmation of successful data import.
Similar Search Tools
vector_search
- Description: Perform vector search on a table using a question and return the top 5 closest answers.
- Input:
table_name
(string): The table name.content_column_name
(string): The column storing content.embedding_column_name
(string): The column storing embeddings.partition_scope
(string): SQL code to define the partition scope as part of theWHERE
condition.question
(string): The question to search.
- Returns: Search results.
match_all
- Description: Perform a search using the "match all" function on a table with a question and return the top 5 answers.
- Input:
table_name
(string): The table name.content_column_name
(string): The column storing content.partition_scope
(string): SQL code to define the partition scope as part of theWHERE
condition.question
(string): The question to search.
- Returns: Search results.
Knowledge Search Tools
get_knowledge_about_how_to_do_something
- Description: Provide guidance on how to perform specific tasks, such as analyzing slow queries, creating tables, or managing storage connections.
- Input:
to_do_something
(string): The task to perform. Supported tasks include:analyze_slow_query
analyze_table_with_small_file
create_table_syntax
how_to_create_vcluster
how_to_create_index
how_to_alter_table_and_column
how_to_create_storage_connection
how_to_create_external_volume
- Returns: Detailed guidance on the specified task.
Usage Notes
- Ensure the
--allow-write
flag is enabled when using tools that modify data (e.g.,write_query
,create_table
). - Provide the correct input parameters for each tool as described above.
Usage with Claude Desktop
Installing as local MCP Server(This way has been tested and verified on MacOS)
Clone this repository:
git clone https://github.com/yunqiqiliang/mcp-clickzetta-server.git
cd mcp-clickzetta-server
Install the package:
uv pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple/
Config credentials
Create a .env file based on .env.example with your Clickzetta Lakehouse credentials:
CLICKZETTA_USERNAME = ""
CLICKZETTA_PASSWORD = ""
CLICKZETTA_SERVICE = "api.clickzetta.com"
CLICKZETTA_INSTANCE = ""
CLICKZETTA_WORKSPACE = ""
CLICKZETTA_SCHEMA = ""
CLICKZETTA_VCLUSTER = ""
XINFERENCE_BASE_URL = "http://********:9998"
XINFERENCE_EMBEDDING_MODEL_512 = "bge-small-zh"
Similar_table_name = "github_event_issuesevent_embedding.github_event_issuesevent_embedding_512"
Similar_embedding_column_name = "issue_body_embedding"
Similar_content_column_name = "issue_body"
Similar_partition_scope = "partition_date >= '2024-01-01' and partition_date <= '2024-01-15'"
Usage
Running with uv
After installing the package, you can run the server directly with:
uv run mcp_clickzetta_server
If this is the first time you are running the server, you could run the following command to acclerate the package installation:
UV_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple/ uv run mcp_clickzetta_server
This will start the stdio-based MCP server, which can be connected to Claude Desktop or any MCP client that supports stdio communication.
You should see output similar to:
uv run mcp_clickzetta_server --no-prefetch
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Starting Clickzetta MCP Server
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Allow write operations: False
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Prefetch table descriptions: True
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Excluded tools: []
2025-03-25 10:11:20,799 - mcp_clickzetta_server - INFO - Prefetching table descriptions
2025-03-25 10:11:21,726 - clickzetta.zettapark.session - INFO - Zettapark Session information:
"version" : 0.1.3,
"python.version" : 3.12.2,
"python.connector.version" : 0.8.89.0,
"python.connector.session.id" : dd46bd27-920d-4760-94a6-6f994d31e63e,
"os.name" : Darwin
2025-03-25 10:11:21,728 - clickzetta.connector.v0.client - INFO - clickzetta connector submitting job, id:2025032510112172821098301
2025-03-25 10:11:23,059 - clickzetta.connector.v0.client - INFO - clickzetta connector submitting job, id:2025032510112305897947697
2025-03-25 10:11:23,728 - mcp_clickzetta_server - INFO - Allowed tools: ['read_query', 'append_insight']
2025-03-25 10:11:23,732 - mcp_clickzetta_server - INFO - Server running with stdio transport
Claude Desktop Integration
command:docker
The MCP server (running in Docker) reads its configuration from environment variables passed via the MCP client configuration (e.g., claude_desktop_config.json
). Key variables:
{
"clickzetta-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "LOG_LEVEL=INFO",
"-e", "CLICKZETTA_SERVICE",
"-e", "CLICKZETTA_INSTANCE",
"-e", "CLICKZETTA_WORKSPACE",
"-e", "CLICKZETTA_SCHEMA",
"-e", "CLICKZETTA_USERNAME",
"-e", "CLICKZETTA_PASSWORD",
"-e", "CLICKZETTA_VCLUSTER",
"-e", "XINFERENCE_BASE_URL",
"-e", "XINFERENCE_EMBEDDING_MODEL_512",
"-e", "Similar_table_name",
"-e", "Similar_embedding_column_name",
"-e", "Similar_content_column_name",
"-e", "Similar_partition_scope",
"czqiliang/mcp-clickzetta-server:latest"
],
"env": {
"CLICKZETTA_SERVICE": "api.clickzetta.com",
"CLICKZETTA_INSTANCE": "your clickzetta instance",
"CLICKZETTA_WORKSPACE": "your clickzetta workspace" ,
"CLICKZETTA_SCHEMA": "your clickzetta schema",
"CLICKZETTA_USERNAME": "your clickzetta usename",
"CLICKZETTA_PASSWORD": "your clickzetta password",
"CLICKZETTA_VCLUSTER": "your clickzetta vcluster",
"XINFERENCE_BASE_URL": "http://host.docker.internal:9998",
"XINFERENCE_EMBEDDING_MODEL_512": "bge-small-zh",
"Similar_table_name": "clickzegithub_event_issuesevent_embedding.github_event_issuesevent_embedding_512tta_table",
"Similar_embedding_column_name": "issue_body_embedding",
"Similar_content_column_name": "issue_body",
"Similar_partition_scope": "partition_date >= '2024-01-01' and partition_date <= '2024-01-15'"
}
}
}
command:uv
- In Claude Desktop, go to Settings → MCP Servers
- Add a new server with the full path to your uv executable:
{
"mcpServers": {
"clickzetta-mcp-server" : {
"command": "/Users/******/anaconda3/bin/uv",
"args": [
"--directory",
"/Users/******/Documents/GitHub/mcp-clickzetta-server",
"run",
"mcp_clickzetta_server"
]
}
}
}
- You can find your uv path by running which uv in your terminal
- Save the server configuration
Example Queries
When using with Claude, you can ask questions like:
- "Can you list all the schemas in my Clickzetta account?"
- "List all views in the PUBLIC schema"
- "Describe the structure of the CUSTOMER_ANALYTICS view in the SALES schema"
- "Show me sample data from the REVENUE_BY_REGION view in the FINANCE schema"
- "Run this SQL query: SELECT customer_id, SUM(order_total) as total_spend FROM SALES.ORDERS GROUP BY customer_id ORDER BY total_spend DESC LIMIT 10"
- "Query the MARKETING database to find the top 5 performing campaigns by conversion rate"
- "帮我从Clickzetta中读取数据,分析下在public这个schema下github_users表里每个公司的用户数。请用中文返回结果,并对结果进行数据可视化展现"
- "帮我从Clickzetta中读取数据,分析下在public这个schema下github_event_issuesevent表里有多少条记录?"
Example Result
- '帮我从Clickzetta数据源中读取数据,先分析基于public这个schema下github_users表里的数据可以做哪些分析?包括指标、统计、趋势、以及各种经典的用户分析模型比如用户价值分析、用户生命周期分析、用户segment等,然后根据这些分析内容生成一个分析报告的dashboard'
- The result of "帮我从Clickzetta中读取数据,分析下在public这个schema下github_users表里每个公司的用户数。请用中文返回结果,并对结果进行数据可视化展现":
- The result of "帮我从Clickzetta中读取数据,分析下在public这个schema下github_users表里每个位置 的用户数。请用中文返回结果,并对结果进行数据可视化展现":
Security Considerations
This server:
- Enforces read-only operations (only SELECT statements are allowed)
- Automatically adds LIMIT clauses to prevent large result sets
- Uses service account authentication for secure connections
- Validates inputs to prevent SQL injection
- ⚠️ Important: Keep your .env file secure and never commit it to version control. The .gitignore file is configured to exclude it.
Installing via Smithery(This way is tobe tested and verified)
To install Clickzetta Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli@latest install @yunqiqiliang/mcp-clickzetta-server --client claude --key ******
Installing via UVX(This way is tobe tested and verified)
# Add the server to your claude_desktop_config.json
"mcpServers": {
"clickzetta_pip": {
"command": "uvx",
"args": [
"mcp_clickzetta_server",
"--service",
"the_service",
"--instance",
"the_instance",
"--vcluster",
"the_vcluster",
"--workspace",
"the_workspace",
"--schema",
"the_schema",
"--user",
"the_user",
"--password",
"their_password",
# Optionally: "--allow_write" (but not recommended)
# Optionally: "--log_dir", "/absolute/path/to/logs"
# Optionally: "--log_level", "DEBUG"/"INFO"/"WARNING"/"ERROR"/"CRITICAL"
# Optionally: "--exclude_tools", "{tool name}", ["{other tool name}"]
]
}
}
Stars
0Forks
0Last commit
3 days agoRepository age
1 monthLicense
GPL-3.0
Auto-fetched from GitHub .
MCP servers similar to Clickzetta Server:

Stars
Forks
Last commit

Stars
Forks
Last commit

Stars
Forks
Last commit