Complex PDF Parsing Toolkit
Collection of PDF parsing libraries like AI based docling, claude, openai, llama-vision, unstructured-io, and pdfminer, pymupdf, pdfplumber etc for efficient snapshot, text, table, and metadata extraction.
📑 Complex PDF Parsing
A comprehensive example codes for extracting content from PDFs
Also, check -> Pdf Parsing Guide
📌 Core Features
📤 Content Extraction
- Multiple extraction methods with different tools/libraries:
- Cloud-based: Claude 3.5 Sonnet, GPT-4 Vision, Unstructured.io
- Local: Llama 3.2 11B, Docling, PDFium
- Specialized: Camelot (tables), PDFMiner (text), PDFPlumber (mixed), PyPdf etc
- Maintains document structure and formatting
- Handles complex PDFs with mixed content including extracting image data
📦 Implementation Options
1. ☁️ Cloud-Based Methods
- Claude & Llama: Excellent for complex PDFs with mixed content
- GPT-4 Vision: Excellent for visual content analysis
- Unstructured.io: Advanced content partitioning and classification
2. 🖥️ Local Methods
- Llama 3.2 11B Vision: Image-based PDF processing
- Docling: Excellent for complex PDFs with mixed content
- PDFium: High-fidelity processing using Chrome's PDF engine
- Camelot: Specialized table extraction
- PDFMiner/PDFPlumber: Basic text and layout extraction
🔗 Dependencies
📚 Core Libraries
langchain_ollama
langchain_huggingface
langchain_community
FAISS
python-dotenv
⚙️ Implementation-Specific
anthropic # Claude
openai # GPT-4 Vision
camelot-py # Table extraction
docling # Text processing
pdf2image # PDF conversion
pypdfium2 # PDFium processing
boto3 # AWS Textract
🛠️ Setup
- Environment Variables
ANTHROPIC_API_KEY=your_key_here # For Claude
OPENAI_API_KEY=your_key_here # For OpenAI
UNSTRUCTURED_API_KEY=your_key_here # For Unstructured.io
- Install Dependencies
pip install -r requirements.txt
- Install Ollama & Models (for local processing)
# Install Ollama
curl https://ollama.ai/install.sh | sh
# Pull required models
ollama pull llama3.1
ollama pull x/llama3.2-vision:11b
📈 Usage
- Place PDF files in
input/
directory
📄 Example Complex Pdf placed in Input folder
- sample-1.pdf: Standard tables
- sample-2.pdf: Image-based simple tables
- sample-3.pdf: Image-based complex tables
- sample-4.pdf: Mixed content (text, tables, images)
📝 Notes
- System resources needed for local LLM operations
- API keys required for cloud based implementations
- Consider PDF complexity when choosing implementation
- Ghostscript required for Camelot
- Different processors suit different use cases
- Cloud: Complex documents, mixed content
- Local: Simple text, basic tables
- Specialized: Specific content types (tables, forms)
Details:
Stars
0Forks
0Last commit
4 months agoRepository age
2 monthsLicense
MIT
Auto-fetched from GitHub .
MCP servers similar to Complex PDF Parsing Toolkit:

Stars
Forks
Last commit

Stars
Forks
Last commit

Stars
Forks
Last commit