A favicon of WisdomForge

WisdomForge

A powerful knowledge management system that forges wisdom from experiences, insights, and best practices. Built with Qdrant vector database for efficient knowledge storage and retrieval.

WisdomForge

smithery badge

A powerful knowledge management system that forges wisdom from experiences, insights, and best practices. Built with Qdrant vector database for efficient knowledge storage and retrieval.

Features

  • Intelligent knowledge management and retrieval
  • Support for multiple knowledge types (best practices, lessons learned, insights, experiences)
  • Configurable database selection via environment variables
  • Uses Qdrant's built-in FastEmbed for efficient embedding generation
  • Domain knowledge storage and retrieval
  • Deployable to Smithery.ai platform

Prerequisites

  • Node.js 20.x or later (LTS recommended)
  • npm 10.x or later
  • Qdrant or Chroma vector database

Installation

  1. Clone the repository:
git clone https://github.com/hadv/wisdomforge
cd wisdomforge
  1. Install dependencies:
npm install
  1. Create a .env file in the root directory based on the .env.example template:
cp .env.example .env
  1. Configure your environment variables in the .env file:

Required Environment Variables

Database Configuration

  • DATABASE_TYPE: Choose your vector database (qdrant or chroma)
  • COLLECTION_NAME: Name of your vector collection
  • QDRANT_URL: URL of your Qdrant instance (required if using Qdrant)
  • QDRANT_API_KEY: API key for Qdrant (required if using Qdrant)
  • CHROMA_URL: URL of your Chroma instance (required if using Chroma)

Server Configuration

  • HTTP_SERVER: Set to true to enable HTTP server mode
  • PORT: Port number for local development only (default: 3000). Not used in Smithery cloud deployment.

Example .env configuration for Qdrant:

DATABASE_TYPE=qdrant
COLLECTION_NAME=wisdom_collection
QDRANT_URL=https://your-qdrant-instance.example.com:6333
QDRANT_API_KEY=your_api_key
HTTP_SERVER=true
PORT=3000  # Only needed for local development
  1. Build the project:
npm run build

AI IDE Integration

Cursor AI IDE

Add this configuration to your ~/.cursor/mcp.json or .cursor/mcp.json file:

{
  "mcpServers": {
    "wisdomforge": {
      "command": "npx",
      "args": [
        "-y",
        "@smithery/cli@latest",
        "run",
        "@hadv/wisdomforge",
        "--key",
        "YOUR_API_KEY",
        "--config",
        "{\"database\":{\"type\":\"qdrant\",\"collectionName\":\"YOUR_COLLECTION_NAME\",\"url\":\"YOUR_QDRANT_URL\",\"apiKey\":\"YOUR_QDRANT_API_KEY\"}}",
        "--transport",
        "ws"
      ]
    }
  }
}

Replace the following placeholders in the configuration:

  • YOUR_API_KEY: Your Smithery API key
  • YOUR_COLLECTION_NAME: Your Qdrant collection name
  • YOUR_QDRANT_URL: Your Qdrant instance URL
  • YOUR_QDRANT_API_KEY: Your Qdrant API key

Note: Make sure you have Node.js installed and npx available in your PATH. If you're using nvm, ensure you're using the correct Node.js version by running nvm use --lts before starting Cursor.

Claude Desktop

Add this configuration in Claude's settings:

{
  "processes": {
    "knowledge_server": {
      "command": "/path/to/your/project/run-mcp.sh",
      "args": []
    }
  },
  "tools": [
    {
      "name": "store_knowledge",
      "description": "Store domain-specific knowledge in a vector database",
      "provider": "process",
      "process": "knowledge_server"
    },
    {
      "name": "retrieve_knowledge_context",
      "description": "Retrieve relevant domain knowledge from a vector database",
      "provider": "process",
      "process": "knowledge_server"
    }
  ]
}
Share:
Details:
  • Stars


    1
  • Forks


    1
  • Last commit


    13 days ago
  • Repository age


    1 month
  • License


    MIT
View Repository

Auto-fetched from GitHub .

MCP servers similar to WisdomForge:

 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit