FastMCP Fashion Recommender

A full stack app built with React, FastAPI, MongoDB, and Docker, powered by CLIP for multi-tagging and clothing recommendations

FastMCP_RecSys

This is a CLIP-Based Fashion Recommender with MCP.

Mockup

A user uploads a clothing image → YOLO detects clothing → CLIP encodes → Recommend similar

Screenshot 2025-04-26 at 10 26 13 AM

Folder Structure

/project-root
│
├── /backend
│   ├── Dockerfile            
│   ├── /app
│   │   ├── server.py                    # FastAPI app code
│   │   ├── /routes
│   │   │   └── clothing_routes.py
│   │   ├── /controllers
│   │   │   └── clothing_controller.py
│   │   │   └──clothing_tagging.py
│   │   │   └── tag_extractor.py         # Pending: define core CLIP functionality
│   │   ├── schemas/
│   │   │   └── clothing_schemas.py
│   │   ├── config/
│   │   │   └── tag_list_en.py
│   │   │   └── database.py       
│   │   │   └── settings.py       
│   │   │   └── api_keys.py     
│   │   └── requirements.txt      
│   └── .env                      
│                      
├── /fastmcp
│   └── app
│       └── server.py  
│
├── /frontend 
│   ├── Dockerfile        
│   ├── package.json              
│   ├── package-lock.json         
│   ├── /public
│   │   └── index.html            
│   ├── /src
│   │   ├── /components            
│   │   │   ├── ImageUpload.jsx    
│   │   │   ├── DetectedTags.jsx   
│   │   │   └── Recommendations.jsx 
│   │   ├── /utils
│   │   │   └── api.js             
│   │   ├── App.js                    # Main React component
│   │   ├── index.js
│   │   ├── index.css            
│   │   ├── tailwind.config.js        
│   │   ├── postcss.config.js        
│   │   └── .env                      
│   ├── .gitignore                    
│   ├── docker-compose.yml            
│   └── README.md                    
└────── requirements.txt

Quick Start Guide

Step 1: Clone the GitHub Project

Step 2: Set Up the Python Environment

python -m venv venv
source venv/bin/activate  # On macOS or Linux
venv\Scripts\activate     # On Windows

Step 3: Install Dependencies

pip install -r requirements.txt

Step 4: Start the FastAPI Server (Backend)

uvicorn backend.app.server:app --reload

Once the server is running and the database is connected, you should see the following message in the console:

Database connected
INFO:     Application startup complete.
Screenshot 2025-04-25 at 1 15 45 AM

Step 5: Install Dependencies

Database connected INFO: Application startup complete.

npm install

Step 6: Start the Development Server (Frontend)

npm start

Once running, the server logs a confirmation and opens the app in your browser: http://localhost:3000/

Screenshot 2025-04-25 at 9 08 50 PM

📌 Sample Components for UI

  1. Image upload
  2. Submit button
  3. Display clothing tags + recommendations

What’s completed so far:

  1. FastAPI server is up and running (24 Apr)
  2. Database connection is set up (24 Apr)
  3. Backend architecture is functional (24 Apr)
  4. Basic front-end UI for uploading picture (25 Apr)

Next Step:

  1. Evaluate CLIP’s tagging accuracy on sample clothing images
  2. Fine-tune the tagging system for better recommendations
  3. Test the backend integration with real-time user data
  4. Set up monitoring for model performance
  5. Front-end demo
Share:
Details:
  • Stars


    1
  • Forks


    0
  • Last commit


    2 days ago
  • Repository age


    13 days
  • License


    Apache-2.0
View Repository

Auto-fetched from GitHub .

MCP servers similar to FastMCP Fashion Recommender:

 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit