
Jina AI MCP Server
Enable seamless integration with Jina AI's neural search capabilities. Perform semantic, image, and cross-modal searches effortlessly through a simple interface. Enhance your applications with powerful search functionalities that leverage advanced neural networks.
Jina AI MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Jina AI's neural search capabilities. This server enables semantic search, image search, and cross-modal search functionalities through a simple interface.
🚀 Features
- Semantic Search: Find semantically similar documents using natural language queries
- Image Search: Search for visually similar images using image URLs
- Cross-Modal Search: Perform text-to-image or image-to-text searches
📋 Prerequisites
- Node.js 16 or higher
- A Jina AI account and API key (Get one here)
- MCP-compatible environment (e.g., Cline)
🛠️ Installation
- Clone the repository:
git clone <repository-url>
cd jina-ai-mcp
- Install dependencies:
npm install
- Create a
.env
file with your Jina AI API key:
JINA_API_KEY=your_api_key_here
- Build the server:
npm run build
⚙️ Configuration
Add the following configuration to your MCP settings file:
{
"mcpServers": {
"jina-ai": {
"command": "node",
"args": [
"/path/to/jina-ai-mcp/build/index.js"
],
"env": {
"JINA_API_KEY": "your_api_key_here"
}
}
}
}
🔍 Available Tools
1. Semantic Search
Perform semantic/neural search on text documents.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "semantic_search",
arguments: {
query: "search query text",
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
2. Image Search
Search for similar images using an image URL.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "image_search",
arguments: {
imageUrl: "https://example.com/image.jpg",
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
3. Cross-Modal Search
Perform text-to-image or image-to-text search.
use_mcp_tool({
server_name: "jina-ai",
tool_name: "cross_modal_search",
arguments: {
query: "a beautiful sunset", // or image URL for image2text
mode: "text2image", // or "image2text"
collection: "your-collection-name",
limit: 10 // optional, defaults to 10
}
})
📝 Response Format
All search tools return results in the following format:
{
content: [
{
type: "text",
text: JSON.stringify({
results: [
{
id: string,
score: number,
data: Record<string, any>
}
]
}, null, 2)
}
]
}
🔐 Error Handling
The server handles various error cases:
- Invalid API key
- Missing or invalid parameters
- API rate limits
- Network errors
- Invalid collection names
All errors are properly formatted and returned with appropriate error codes and messages.
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Jina AI for their excellent neural search platform
- Model Context Protocol for the MCP specification
Stars
2Forks
0Last commit
4 months agoRepository age
4 monthsLicense
MIT
Auto-fetched from GitHub .
MCP servers similar to Jina AI MCP Server:

Stars
Forks
Last commit

Stars
Forks
Last commit

Stars
Forks
Last commit